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by Ronald J. Sovie and John V. Dugan, Jr.
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ABSTRACT

The energy cost for ion production has been calculated for optically
thin atomic helium, argon, and cesium gases by comparing the relative proba-
bilities for the competing inelastic processes of excitation and ionization.
Results were obtained for two cases: (1) a monoenergetic electron beam in-
cident upon a cold neutral gas,and (2) the interaction of a thermal electron
gas with cold neutrals. Experimental excitation cross sections were used in
the helium calculations. The semiclassical Cryzinski method was used to
determine theoretically the cross sections needed for the argon and cesium
calculations. Results obtained by using theéretically determined helium
excitation cross sections are compared with those obtained by using the ex-
Perimental cross sections. The results are presented graphically in plots
of ion-production cost (ev/ion) and ion-production rate versus electron
energy. In general, this cost decreases smoothly with increasing electron
energy in the thermal case and decreases irregularly with increasing elec-
tron energy in the beam case. A cursory analysis of the interaction of an
electron beam with a plasma has been made from the viewpoint of determining
the plasma conditions under which the results of each of the above-mentdongd

cases may be applied.
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INTRODUCTION

In plasma production and heating devices, it is advantageous to know the
net energy cost for each ilon produced, the ion-production rate, and the product
of these two terms, which is the net power consumed in ion production. These
guantities are needed to perform calculations on power balance and species
continuity.

Since there are many possible methods of producing and maintaining plas-
mas, as well as a wide range of operating pressures and energies, it is ob-
vious that one treatment cannot completely describe the ion-production param-
eters or costs for all plasma devices. Two plasma~production mechanisms are
considered herein: (I) a monoenergetic electron beam incident upon a neutral
gas, and (II) a low-pressure discharge in which the energy is added directly
to the electrons. In both cases, the electron energy is transferred to the
other species by collisions. These collisions may be either elastic or in-
elastic, the former resulting in gas heating and the latter in excitation or
ionization processes. The energy transferred from the electrons is expended
usefully if the atom is ionized but is lost if the target atom is excited and
radiates away the excitation energy.

If the cross sections for the various inelastic processes are known, the
ion-production cost may be determined by comparing the cross sections for the
competing processes of excitation and ionization. Such cross sections have
been experimentally determined for a few gases but, in general, experimental
values of the inelastic excitation cross sections for gases of interest in
plasma-production devices are not available and calculations of the ion-

production costs have not been made. The good agreement obtained between the
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theoretical cross sections calculated by using the semiclassical Gryzinski
method (ref. 1) and those experimental cross sections that are available in-
dicates, however, that a fairly good approximation of the ion-production cost
can be obtained by using these theoretical cross sections.

The purposes of this study are to calculate (1) the ion-production cost
for case I, a monoenergetic electron beam incident upon neutral helium,
argon, and cesium gases, and (2) the volume-ion-production cost, the ion-
production rate, and the power consumed in maintaining a steady-state plasma
for case II. In the latter case, the plasmas considered are partially ion-
ized, optically thin helium, argon, and cesium plasmas, where a Maxwellian
distribution of free-electron energies is assumed. The theoretical Gryzinski
cross sections are used in both approaches.

THEORY
Assumptions and Limitations

The ion-production cost is calculated by assuming that the only im-
portant losses of free-electron energy occur by inelastic collisions, that
is, ionization and excitation of bound electrons. 1In the ranges of elec-
tron energy or temperature of interest (from 2.5 to 50 ev), the energy loss
in elastic collision is clearly negligible since the average energy loss
per encounter is small. Furthermore, all electron-atom collisions are
assumed to occur with ground-state atoms. The results presented are

12 1 11

applicable only to low-pressure (N, = 107 to 10.3, N, = 107 to 1012),

optically thin plasmas for which cumulative inelastic impacts are improbable

(ref. 2) due to the short lifetimes of the excited states.
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The processes by which charged particles recombine may be considered
separately in the ultimate power-balance calculation. The low-pressure dis-
charges are primarily wall-controlled, and for wall recombination or radia-
tive recombination, the energy is considered as being lost from the plasma.
Although there may be an energy feedback to the electrons in three-body re-
combination, this process is not the dominant recombination process for the
number densities and electron energies considered in this treatment.

Collisions between electrons and atomic ions may be important in the
ion-production-cost calculations. Contributions of the effects of including
the ionization and excitation of Ar't and Cs* were therefore included in this
treatment, since these are the only lons of importance in the calculations.

In the analysis of the interaction of a monoenergetic electron beam
with a partially ionized plasma, the possibility of generating plasma os-
cillations must be considered in addition to the collisional processes.
These possibilities are included in the discussion of this interaction
given in appendix A.

Development of Equations

Monoenergetic-beam case. - In this section, the equations necessary for

determining the energy cost per ion will be developed for a monoenergetic
electron beam of energy EB incident upon a eold neutral gas. Using the
symbols defined in appendix B, let the normalized probability for exciting

the jth level be defined as

Q,(Ep)

) g Ty v

where Qj(EB) is the cross section for exciting the jth atomic energy level
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by impact with an electron of kinetic energy Epg, and Qtot(EB) is the total
inelastic cross section for the same electron. BSimilarly, the normalized

probability for ionization by an electron with energy Eg 1is

Q; o (Bg)
P+( - 10n 2
1 EB) Q‘bottEBj 2)

For kinetic energies of the incident electron such that Ep - Ej < E+, where

Ej and E+ are the energies of the jth excited state and the ionization

energy, respectively, the energy cost for each ion formed by the beam is

simply

Py = P+T2 5 ev/ion (3)
1' B

with the assumption that any excited state produced will lose the excitation
energy by radiation

The calculation becomes more complex, however, if the electron energy,
after the first inelastic collision Ep - Ej, is greater than the ionization
energy, since this electron can still ionize another atom. When the beam
energy is sufficiently high to cause a maximum of two ionizations, the ex-

pression for QB becomes

Eg

P = ——— ev/ion (4)
F(E;)
where
Ph(5g) = B(By) + > Py(B )P (5, - E)) (5)
3

When a maximum of three ionizations is possible, the equation for ¢B is

Fy

Pp = ;izi;s ev/ion (8)



where
Pg(EB) = P;(EB) +:£::§Z%3(EB)Pi(EB - Ej)PI(EB - B - E, ) (7)
i

Similar equations may be obtained for higher beam energies by including
additional terms in the fashion of equations (4) to (7).

Electron-energy-distribution case. - In this section, the interaction

between neutral gas atoms and an electron gas with a Maxwellian distribution
of electron energies is analyzed. The theory is developed in the same manner
as presented by Sovie and Klein (ref. 2).
The number of jth excited states produced per unit volume per second by
monoenergetic electrons of speed Ve is
Nj = NN.Q, (V )V, (em™2) (sec™t) (8)
where the cross sectlons employed in this section are expressed as a function
of electron speed Vé. If there is a distribution of free-electron energies,
equation (8) becomes
fr, = NN L (VIV)  (en™®)(sec™) (9)
where the brackets indicate an average value over the distribution function.

The total energy expended in excitation processes per unit volume per second

is, therefore,

Ej tot = E NsEy = NoWe E (Qj(Ve)Ve)Ej ev/(cm5)(sec) (10)
J J
Similarly, the number of ions produced per cubic centimeter per second is
X - -3y¢ -1
Nion = NoNe<Qion(Vé)ve) (em™°) (sec™) (11)

and the energy expended in ionization processes is given by

Eion = NolNe{Qson(Ve )V )E ev/(cm®) (sec) (12)
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The net energy cost for producing singly ionized atoms (i.e., the volume-

ion-production cost) is, therefore,

¥ = Fion T %3, tot ev/ion (13)
Nion
or
E" + E (Q. (V.)V )E,
it el el
. J .
op -(Qion(Vé)Vé)" ev/ion (14)

The net power consumed in ion production is the product of the ion-

production rate and the energy cost per ion produced. 1In equation form,

- -19 3
W = 1.602x10 N N_(Q; (V. )V )oq w/em (15)

When inelastic electron-ion interactions are included in the treatment, the

expression for omp becomes

N,
PRCAIAIATIEE ST AALY
o}
P = i T k ev/ion (16)
<Qi0n(ve)ve) + ;\.],Zn <QJ:.on(Ve)Ve)

where i and k represent a summation over all inelastic processes, in-

cluding ionization of the atom and singly ionized species, respectively,
1

and  Q;on

is the ionization cross section for the singly charged species.
Calculation of Monoenergetic and Maxwellian Averaged Cross Sections

Cross sections. - The cross sections used in the helium calculations

were those previously employed in reference 2, where the results of a num-
ber of individual investigations of helium excitation cross sections were
combined to yield a credible self-consistent set of helium excitation func-

tions. These excitation functions were represented by empirical equations
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describing the cross section as a function of electron velocity, multiplied
by the electron velocity and averaged over a Maxwellian distribution of
electron velocities to obtain the quantities (Q(V.)Vy) mentioned in the
preceding section. The argon and cesium cross sections used in the present
treatment were calculated by using the semiclassical Gryzinski method
(ref. 1). The total excitation cross section for helium was also calcu-
lated by this method for comparison with the results in reference 2.

The Cryzinski cross section expressions were derived in reference 1
in a classical manner with the assumption that the inelastic electron-atom
collision occurs directly between the incident electron and a bound or-
bital electron. The kinetic energy of the bound electron is considered
explicitly in this treatment, and consequently, the derived cross sections
are generally more exact than those given by the classical Bohr-Thomson
expression obtained for an atomic electron at rest with respect to the in-
cident electron.

According to the Gryzinskli formulation, the cross section for an in-
elastic electron-atom collision with an energy loss equal to or greater
than U 1is given by

MUO
Q(U) = = g3(Ep/U, By /U) (17)

where
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3/2 2 -
E E Eq\ N
2 281w 1\ (U
g:(Es/U, By JU) = | o z = (1-——‘:- =
J ‘2/ ’ l{ Eq +Eo 3Ey; Ep\ By \E;
if U+ B <E,
3/2 2 ‘!1/2 >(18)
E E E
[ E \) z_l+_U__é_.; i (_q_) (_1+_11>(1_}L
BB/ 3iFz Ea\ Fz/ \Fp VAN ‘s
. if U+ By > E,

E; 1is the kinetic energy of the bound electron, and Es> 1is the energ; of
the incident electron.

The symbol M denotes the number of equivalent electrons (saﬁe prin-
cipal and azimuthal quantum number) in the outer shell of the target atom
and serves as 'an effective probability factor that accounts for the number
Sf electrons available for collisions. For an atom with a single outer-
shell electron, the kinetic energy of the bound electron El is equal to
the ionization potential. For other atoms, however, E1 is assumed to be
equal to the sum of the total energy needed to remove all of the electrons
in the outer shell divided by the number of outer-shell electrons. The
validity of this assumption is shown in reference 3. Equation {17) is
actually a definition of the ionization cross section when U = E. 1In
this case, both electrons are free after an ionizing collision, and there

is no 1limit on the energy transferred to the bound electron. The expres-

sion for the ionization cross section is then

ion ©
G

In the calculation of excitation cross sections for bound electrons,

g5 (Ep/E", By /ET) (19)
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the arrangement of the energy levels in the atom must be considered. The
inelastic excitation cross section for an electron-induced transition be-
tween the ground state and an excited state is defined as the cross section
for an energy loss restricted to the energy range U; to Us (see

sketeh (a)).

- U2
Range U to Us {

Uy

Ground state

(a)

The symbol Ui represents the energy difference between the state to be ex-
cited and the ground state, and U2 represents the energy difference between
the next higher excited state and the ground state. The incident electron
abruptly "sees" the upper state once it has enough energy tokexcite it, and,
consequently, that level serves as a semiclassical limit to the cross sec-
tion function. Using the formulation of equation (17) gives the expression

for the excitation cross section of a level at energy U; above the ground

state simply as
Qexc = Q(Ul) - Q(UZ) (20)
‘The mean product of the theoretical cross section and the electron velocity

integrated over a Maxwellian free-electron velocity distribution at kinetic

temperature kTe is

(e8]

Qv )v,) =

S

Uz
“L[ Q(E,) exp(-Eo /KT, )Es dE, (21)
1
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where C, 1s a normalization factor equal to (ZﬂkTe)z/z(me)l/z. The

o}
appropriate Qj or Qion expressions from equation (18) are employed de-

pending on the value of E, compared with E; + U. The limits of equa-

tion (21) refer to the excitation process. The upper limit for ionization
would be infinity.

Atomic model for calculations. - The total inelastic excitation cross

sections for ground-state atoms have been calculated by using equation (20)
with Ui equal to the first excitation potential and Ué equal to the
ionization potential. This approximation of the total inelastic cross sec-
tion has been used in the thermal-electron-gas calculations.

The energy expended in each excitation Em is taken as the mean energy
between the first excited state and the ionization potential. This is a
reasonable approximation in view of the inverse-square dependence of the
excitation cross section on the energy and the high density of excited
states near the continuum. In the monoenergetic-beam calculations for argon
and cesium, the excitation cross sections for certain discrete levels were
determined by using equation (20). In the region of highly excited elec-
tronic states, the energy difference between excited states is small, and
the cross sections for the remaining levels can be very well approximated
as those for one level, in a manner similar to that used in the total-
excitation cross section calculation.

The energy levels used in the helium calculations for both cases are
shown in figure 1. The energy levels used for the argon and cesium mono-
energetic beam calculations are shown in figures 2 and 3, respectively. For

two levels with nearly identical energies (e.g., the 6p 2Pi/2 3/2 states in
J
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cesium), the cross section is best approximated by considering the two lev-
els as one with an energy equal to the mean energy of the two, and the next
higher level serves as a limit to the cross section. Sheldon and Dugan
(ref. 4) have used this procedure and obtained good agreement with experiment.

In the calculation of the cross sections for the cesium atom, which has
one electron in the 6s orbital, the value for El is the ionization po-
tential, 3.89 electron volts, and M = 1. For the argon atom, El is deter-
mined by takine one-sixth of the sum of the ionization potentials of the six
equivalent 3p electrons (therefore, M = 6), which gives an average kinetic.
energy El of 5l1.72 electron volts, while the iolization potential is
15.75 electron volts. ZFor the helium atom, with two 1s electrons, M = 2,
E = 239.4 electron volts, and the ionization potential is 24.56 electron volts.

The ionization of singly charged species may be important in the cesium
and argon calculations for high electron kinetic temperatures and percentage
ionization. The ionization potential of cst is 25.1 electron volts and that
of Ar+ is 27.6 electron volts. The value of El for Cs+ was approximated by
extrapolating and averaging the ionization potentials of the six electrons
in the 5p subshell and was estimated as 55 electron volts. The value of
El for the Ar+ calculations is one-fifth of the sum of the ionization po-
tentials of the five 3p electrons and is equal to 58.5 electron volts.

RESULTS

The ion-production costs for the monoenergetic-beam case using the
energy levels shown in figures 1 to 3 are presented as a function of beam
energy by the solid curves in figure 4. For the three gases, this cost

drops very sharply as the beam energy increases from the ionization potential




13
to a few volts above the ionization potential. The costs for the helium
and argon atoms are seen to decrease in a slightly irregular manner as the
beam energy is further increased. The relative magnitudes of the curves
are as one would expect from an inspection of the atomic structure of the
atoms involved. The cost is highest for helium (highest ionization energy
and first excited state) and lowest for cesium (lowest ionization poten-
tial and first excited state). Due to the large number of terms carried in
the determination of gp (egs. (4) to (7)), the calculations had to be ter-
minated at an energy that would allow a maximum of three ionizations. Con-
sequently, comparison of the costs for the three atoms cannot be made over
a wide range of energies. The dotted portion of the cesium curve was ob-
tained by considering only two cross sections, the total excitation cross
section with an associated energy loss of 2.7 electron volts and the ioni-
zation cross section. This approximation allowed the cesium results to be
carried to higher beam energies, although the accuracy of these results is
unknown.

The results of the electron energy distribution calculations are shown
in figure 5, which is a plot of volume-ion-production cost versus electron
kinetic temperature. The volume-ion-production cost for each of the atoms is
seen to decrease. sharply with increasing temperature up to about 12 electron
volts and then to decrease slowly as the temperature is increased to 50 elec-
tron volts. The results obtained by using the Gryzinski approximation for
the total-excitation cross section for helium are seen to agree favorably
with the results of reference 2. As would be expected, the energy cost per

ion was greatest for helium and least for cesium.
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In order to facilitate the use of these results in other calculations,
such as a power balance, two additional curves are presented for each of the
gases. An ion-production-rate parameter ﬁion/NoNe (eq. (11)) is plotted
as a function of electron kinetic temperature in figure 6. Figure 7 shows
the variation with electron kinetic temperature of the power consumed in ion
production QTﬁion/NoNe (eq. (15)).

The effects of inelastic electron-ion collisions on the O values pre-
sented in figure 5 are shown in figure 8 for a fraction ilonized of 10 per-
cent in argon and cesium. These ccllisions are not important up to aboub
40 electron volts for helium (ref. 2) and were therefore not considered.

The results for the monoenergetic beam are compared with the thermal results
of the average electron kinetic temperature in figure 9. The costs for the
thermal case are seen to be considerably lower than those for the mono-
energetic beam. This result was expected since the high-energy tail of the
distribution operates in a region where ionization 1s more probable than
excitation.

The results of the collision-time ccmparisons are shown in figure 10

3

for a neutral particle density of 1012 cm- , & fraction ionized of 10 per-

cent (Ne = 10+ cm=3) and an electron kinetic temperature varying from 0.5

to 10 electron volts. The electron-electron energy relaxation time and the
inelastic electron-neutral collision time are plotted versus the
monoenergetic-electron-beam energy in figure 10.

The growth time for plasma oscillations (considering the two-stream
instability analysis (ref. 5)) has been calculated by using the equation

11

given in appendix A. For a plasma electron density of 10 cm-s, the growth
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time would be of the order of 1072 second, which is very much less than the
times shown in figure 10. Consequently, an electron beam impinging on the
partially ionized plasma mentioned above would probably have its energy ran-
domized to some energy different from the beam energy and the electron kinetic
energy of the plasma. The net energy cost per ion in this case would likely
be below that for a monoenergetic beam and approach the thermal results at
the average electron kinetic energy shown in figure 9.
CONCLUDING REMARKS

Theoretical calculations of the total excitation cross sections for
helium, argon, and cesium have been made by using the semiclassical Gryzinski
method. These cross sections have been used in the calculation of the ion-
production cost for (1) a monoenergetic electron beam incident upon a cold
neﬁtral gas, and (2) a thermal electron gas interacting with neutrals. The
results obtained by using the Gryzinski approximation of the total excita-
tion cross section for helium agree favorably with those obtained by using
empirically obtained cross sections (ref. 2).

The energy cost per ion formed is higher for the monoenergetic beam
than for the thermal electron gas at a kinetic temperature equal to the
beam energy. The ion-production-cost curves exhibit the expected trends,
namely, that the atoms with the higher ionization potential and first ex-
cited state have the higher cost per ion and that these costs decrease with
increasing electron energy.

The results for the monoenergetic-beam analysis are applicable for a
beam incident upon a cold neutral gas. If the gas is partially ionized,

however, the beam energy will probably be randomized by setting up plasma
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oscillations, and the energy cost per ion in this case would be less than
that calculated in the above case.

The electron-energy-distribution results apply to steady-state, partially

ionized, tenous plasmas that are optically thin and in which a Maxwellian dis-

tribution of electron energies prevails. The results presented represent
only a portion of the power-consumption rate or species-production rate in
an actual experiment. There will be additional terms to account for re-
combination or wall losses, but these depend strongly on the experimental
configurations. There will also be additional terms if the plasma is heated,

accelerated, or does work.
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APPENDIX A
INTERACTION OF MONOENERGETIC ELECTRON BEAM WITH PARTIALLY IONIZED PLASMA
An electron beam incident upon a partially ionized nonequilibrium plasma

may interact in a number of different modes. The electron beam may transfer
its energy directly to the plasma neutrals or electrons, but it may also ini-
tiate plasma oscillations or instabilities. If the beam interacts with the
neutrals, it will ionize them directly, as in the monoenergetic-electron-beam
case. If the electron beam interacts with the plasma electrons (which are
assumed to have a Maxwellian distribution of electron energies), it will be
thermalized with the free-electron gas. If plasma instabilities are gen-
erated, the electron beam energy may initially be randomized at some energy
different from the beam energy and the plasma electron energy. A cursory
analysis of an electron-beam - plasma interaction may be carried out simply
by comparing (1) the time between electron-neutral collision Tos (2) the
energy relaxation time for an electron-beam - thermal-electron-gas interac-
tion, and (3) the growth time for plasma instabilities. The time between

inelastic electron-neutral collision is given by the expression

1 ,
T = (A1)
c NOQTZVe;Ve
The energy relaxation time for electron-electron collisions is taken from

Spitzer (ref. 6) and may be written as

3
V
TE = B (AZ)
18 Ep
6. 44x10™ NgloA G| [—
kT
2
kST3 l/
3 e

where Vg 1s the velocity of the beam electrons, A = —
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G(A/EB7kTe) is a function of the ratio of the beam energy to the free-

electron energy, as defined in appendix B.
A qualitative analysis of the two-stream instability (ref. 5) indi-
cates that the growth time for plasma oscillations is proportional to the

plasma period, therefore,

T «(.%)._ (-AS)

b

g

where Wy is the plasma frequency equal to 5.64x104(Ne)l/2. The energy
relaxation time and the electron-neutral collision time are plotted in

figure 10, but, in general, 7, will be much less than either of these times.

g
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APPENDIX B
SYMBOLS

Co noralization factor, (anTe)S/zm%/z, (evs/z)(gl/z)
E energy, €v
Em mean energy between first excited state and ionization potential, ev
El kinetic energy of bound electron in Gryzinski formulas, ev |
E2 energy of incident electron in Gryzinski formulas, ev
ET ionization energy, ev
ﬁion energy expernded in ionization processes, ev/(cm®)(sec)
'j,tot total energy expended in excitation processes, ev/(cms)(sec)
e electronic :charge, 4.8024x10710 esu

o(x) - x dg;((x) Eg 1/2 5 : o2
G(x) = » where X = and o(x) = 17z av ay

e s 0
kTe electron kinetic temperature, ev
M number of equivalent electrons in outer shell of target atom in
Gryzinski formulas

m electron mass, 9.11x10"28 g
N number density, em™>
ﬁion ion-production rate, (cmfs)(sec_l)
hj production rate of excited states, (cm=3) (sec™1)
Pj normalized probability for excitation of jth atomic energy level
PZ normalized probability for ionization
Q inelastic cross section, cm2

ion ionization cross section for inelastic electron-ion interactions, cm?
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Q(Ve) inelastic cross section represented as function of electron

velocity V,, cm®

) energy loss in Gryzinski formulas, ev

v velocity, cm/sec

W power consumed in ionization, w/cm3

o, constant in Gryzinski calculations, 6.53x10" 14 (cmz)(evz)

To electron-neutral collision time, sec

TE energy relaxation time for electron-electron collisions, sec
Tg growth time for plasma instabilities, sec

) ion-production cost for monoenergetic beam, ev/ion

Py volume-ion-production cost for electron-distribution case, ev/ion
@y, plasma frequency, sec™t

Subscripts:

B electron beam

e electron

ion ion

J jth excited state

0 neutral particle

tot total - sum of all inelastic processes
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Figure 5. - Volume-ion-production cost as function of electron kinetic temperature.
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Figure 7. - Power-consumption parameter as function of electron kinetic temperature.
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Figure 9. - Comparison of monoenergetic and thermal results at average electron kinetic temperature.
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Figure 10, - Coilision time comparison,



